
Space weather notes. 
 
Background. 
 
The goal of this project is to simulate individual particles in the magnetosphere. Delcourt 
wrote a program called code89t.f which simulates a single particle. code89t.f does not 
read in magnetic and electric fields, it calculates them. The magnetic field is calculated 
using the Tsyganenko model. For code89t.f the user specifies initial conditions for a 
single particle: energy, pitch, phase, magnetic local time, magnetic latitude, and distance 
from the earth’s center. The code will then simulate the particle’s movement in the 
magnetosphere and write out an output file with this information. 
 
Modifications to code89t.f 
 
Code89t.f was first modified to read in a grid along with magnetic and electric fields (so 
they don’t need to be calculated anymore). The grid is called MHDGRID and specifies 
the positions of the electric and magnetic field vectors. The code performs interpolation 
to find vector values at positions in between grid points. 
 
Originally code89t.f output data every delta T steps. The output consisted of energy, 
pitch, phase, magnetic latitude, magnetic local time, etc. This is fine for one particle but 
for many the output file was too large. In order to reduce the output file size the program 
was modified to calculate averages inside 1 RE cubes or “bins”. The output is then 
average values inside a single bin, and there is one output line for each bin as the particle 
moves through space. 
 
Code89t.f was again modified to compute initial conditions instead of specifying them. 
For each initial condition a range of values of is given, and the code will randomly pick 
values within each range. In this way the program can simulate thousands of particles in a 
single run. The initial conditions were polar wind, solar wind, auroral wind, 
plasmashphere, etc. 
 
Finally, the code was parallelized to run in the cluster and modified to read V fields 
instead of E fields. E is then calculated as E=-V x B. After E is computed the V field is 
not used by the model anymore. 
 
Cluster Fortran program. 
 
First the code reads the initial parameters file with information about the kind of release 
(auroral, polar, plasmasphere, etc.), location of field files, etc. 
 
Then two sets of input files are read: the velocity files and the magnetic field files. There 
are several sets of fields: SBz, Nov03, etc., each with a different number of files. These 
sets of files are independent of the release type, that is, one can have auroral release with 
SBz fields, auroral release with Nov03 fields, etc. 



Each field file occurs at a given point in time; the times are given in the time file. The 
positions in space for the velocity and magnetic fields are given in the file MHDGRID. 
The code also reads the CAPS conditions, used to compute initial conditions for each 
particle. 
 
The solar release case. 
 
The solar wind case was the most difficult to implement. The problem is that most 
particles from the solar wind fly past the earth and generating many of them wastes disk 
space. It was decided to limit the number of particles that go through any bin to 100. 
After that the particle data is not written to disk for that bin. This process is performed in 
the Fortran cluster code. 
 
IDL movie generation. 
 
The program looks at the current directory to find out the release type. The IDL movie 
code reads the data from the cluster run, the time file, the B and other condition, and the 
CAPS conditions if needed. Its output are postscript files, one file for each frame and 
quantity computed (energy, pressure, density, etc.). If NUM_SUBIMAGES is greater 
than 1 then the program will generate intermediate frames by interpolating data from the 
calculated frames. The postscript frames are used by the “convert” command in math to 
generate mpeg files for each quantity. 
 
Due to the time it takes to read the input files the program can restart at a given file input 
number. Look for variables numInputFiles, startWithFile, and fileSaveCount. As the 
program reads the data files it calculates density, energy, pressure, etc., for each point in a 
rectangular grid. The values calculated are for 1 RE^3 cubes. The dimensions of the 
computing grid are GSM X=[-70..30], Y=[-30..30], Z=[-30..30]. After fileSaveCount 
input data files the program saves the data[] array into an IDL data file using the save 
command. This is the file that is read in order to restart the program. If numInputFiles is 
equal to startWithFile then the data is read from the IDL saved file, and no more ascii 
data from the cluster is used. This option saves a lot time because reading the cluster ascii 
files takes several hours. 
 
Note: There are two capabilities that we have not used for quite a while: generating 
velocity distribution plots (look for makeVelDistr flag) and making movies for the solar 
release case (look for SOLRE case). 
 
 
Some IDL code parameters. 
 
USE_PLSP_DATA. For plasmasphere release, set it to 1 to display data from 3Dplsp file. 
USE_PARTICLE_DATA. For plasmasphere release, set it to 1 to display data from 
cluster run. 
SKIP_NEGATIVE_START_TIMES. Set to 1 to skip data from negative times. 
sliceTimeLenghMinutes. This is the frame length. 



createAsciiDataFiles. Set it to 1 to save data in ASCII format. 
MAX_SLICES. Maximum number of frames 
sliceTimeLength. Time length of each frame in minutes. 
NUM_SUBIMAGES. Used to smooth movies. Number of subframes that are generated 
by interpolating. 
useVariableSaturation. Set it to 1 to make the saturation vary according to the counts in 
each bin. 
debugParticles. Useful for debugging. Program stops after reading this number of 
particles. 
makeVelDistro. Set it to 1 to generate velocity distribution plots. We have not generated 
these plots for a long time. 
showQuantity array. Set elements to 1 to generate corresponding movie. 
totalDialSets, dialMin, useBatchRanges. Used for velocity distribution plots. 
minValue, maxValue. Determines plot data range in frames. 
 


